If it's not what You are looking for type in the equation solver your own equation and let us solve it.
g(2)=4(2)^2-3(2)+5
We move all terms to the left:
g(2)-(4(2)^2-3(2)+5)=0
We add all the numbers together, and all the variables
g^2-1737=0
a = 1; b = 0; c = -1737;
Δ = b2-4ac
Δ = 02-4·1·(-1737)
Δ = 6948
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6948}=\sqrt{36*193}=\sqrt{36}*\sqrt{193}=6\sqrt{193}$$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{193}}{2*1}=\frac{0-6\sqrt{193}}{2} =-\frac{6\sqrt{193}}{2} =-3\sqrt{193} $$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{193}}{2*1}=\frac{0+6\sqrt{193}}{2} =\frac{6\sqrt{193}}{2} =3\sqrt{193} $
| 1/6(a-5)=2/3(a+2)-1/3a | | 2x+×=36 | | 4(p-15)-8=4 | | 2x2+13x+20=0 | | 60=6(+2n) | | 9-6(2x-5)=-3 | | -1⁄4a−4=4a= | | 6x2=−19x−15 | | y=-2(-1)^2+-3+4 | | 3x-x+23=60 | | 4x=x-35 | | 2y+34=12 | | 4(j+1)-6=10 | | 16x+28x=180 | | 3/10x−30=60 | | 4n^2+22n=12 | | 5.8m-3.8=1.2m+7.8 | | 2(t)=4t^2-3t+5 | | 28x+16x=180 | | -30+6k=-3(k-5) | | -5f=-2–6f | | -5/2h=4 | | 91=3x+2x | | 10r+1=(1+r)5 | | 28+24x=17x | | (3x/5)+x=2/3 | | -3x+25=-2 | | 2x=12+4x | | 3x/5+x=2/3 | | 8m+4m-4m+1=9 | | 3p–1–(p+3)=1 | | 97=-3(3+4a)+9 |